Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1094720130180040778
Biotechnology and Bioprocess Engineering
2013 Volume.18 No. 4 p.778 ~ p.786
Production of long-chain isomaltooligosaccharides from maltotriose using the thermostable amylomaltase and transglucosidase enzymes
Rudeekulthamrong Prakarn

Sawasdee Komkrich
Kaulpiboon Jarunee
Abstract
Amylomaltase and transglucosidase were combined to produce long-chain isomaltooligosaccharides (IMOs). IMOs are effective prebiotics that stimulate the growth of healthy bacteria in human intestines and thus promote better overall health. In this study, the p17bAMY amylomaltase was expressed from its gene, which had been directly isolated from soil samples, while transglucosidase was purchased and purified by a gel-filtration column. Crude amylomaltase was purified by heat treatment, Q-, and phenyl-sepharose column. The purified amylomaltase had a molecular weight of 57 kDa. Specificity on the substrates of the amylomaltase was also studied and it was found that this enzyme was able to catalyze transglucosylation activity using substrates G2 to G7. However, G3 was the most preferred substrate for the enzyme. Here, K m-G3 and k cat/K m were 23 mM and 1.72 ¡¿ 108 mM/min, respectively. Amylomaltase and transglucosidase were tested both alone and in combination on a G3 substrate to study the efficient process for the IMOs production. The obtained products from the enzymatic reactions were monitored using the TLC analytical method and a densitometer. The amylomaltase led to products containing linear maltooligosaccharides, while the transglucosidase produced short-chain IMOs. Interestingly, when amylomaltase and transglucosidase were used in combination, long-chain IMOs with sizes larger than IMO4 were observed under the determined condition.
KEYWORD
amylomaltase, isomaltooligosaccharides (IMOs), prebiotic, transglucosidase, transglucosylation
FullTexts / Linksout information
 
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI)